Prerequisites for the Application of Low - Intensity Irrigation Systems on Sloping Lands as A Means to Combat Erosion in Azerbaijan - Juniper Publishers
Journal of Trends in Technical and Scientific Research
Abstract
The article examines the issues of studying the world
experience and the results of many years of experiments in various
countries on the applicability of low-intensity irrigation systems in
various climatic and soil conditions shows that the creation of
irrigation systems of this type is an effective and economically viable
irrigation of various types of crops: perennial plantings, orchards,
vineyards, forest plantations, shrub farms as soil protection means,
grain-legumes, vegetables, ridge crops and technical crops, ornamental
plantations, goons, nurseries and others. The low-intensity system (drip
irrigation, micro sprinkling, aerosol irrigation, subsoil and
inektsionnoy irrigation, etc. which has almost universal application, in
particular, it is applicable where the use of other methods irrigation
is impossible or ineffective:
a. In difficult terrain and large lot slope (up to 45 degrees or more);
b. In areas with prolonged drought and strong winds;
c. Water resources in local with a relatively limited amount of water;
d. On soils with low power and very low or high Hygroscopicity;
e. On soils prone to salinization;
f. When used for irrigation water with high content of water-soluble salts, etc.
Keywords: Duration; Drought; Wind spa; Local moistening; Loss; Drip irrigation; Ornamental plantations
Introduction
In recent years both in the republic, and in the CIS
and far abroad, the development of stationary systems of low-intensity
irrigation, consisting of micro-irrigation, pulse sprinkling of
self-oscillating action, aerosol irrigation, combined micro
humidification, drip, pulse-drop and others. This is due to the fact
that the system of low-intensity irrigation has a number of significant
advantages over other methods of irrigation. Especially promising is the
creation of automated sprinkling systems with pulsed apparatuses,
micro-incendiaries of the combined, step-type micro-idlers of the rocker
type, pulse- dropping devices of self-oscillating action, etc. It
should be noted that these systems can reduce the capital costs of their
construction, also provide the principle of both "sprinkling” and "drip
irrigation” with daily water consumption of plants. That is, to create
optimal conditions for the growth and development of plants in the
period of their vegetation.
The basis for intensification of agriculture in the
mountainous and Piedmont areas of the Republic are based mainly with the
development of horticulture and viticulture in these regions is mining
and irrigated agriculture. While here, from among the technology
intensity of irrigation is used extensively drip irrigation systems [1].
Note that in drip irrigation technology principle of continuous supply
of water plants in accordance with the progress of water consumption,
taking into account the possibility of technical means and the nature of
soil moisture. This is a daily compensation water loss through
evaporation and support optimum humidity in a given circuit soil
moisture [1-3].
Moves research
Under drip irrigation water use efficiency is 85-95%.
Drip irrigation provides a high yield per unit volume of water
consumption. Under this irrigation the soil supported the most favorable
air and nutrient regime for plant development. Thanks to the
productivity of all cultures compared to conventional sprinkler systems
increased by 40-60% and more [4]. Especially the significant increase in yield is observed under irrigation of vegetable and melon crops.
Due to the fact that under drip irrigation
fertilizers and pesticides are made locally in small quantities and in
the desired time frame, good absorption and achieved great savings in
them. Drip irrigation technology includes water supply mode in
accordance with water consumption culture.
Water supply mode depends on the rules of the dates
and duration of irrigation for irrigation period, the zone, flow,
hydration number of drips and location schemes of water- physical
properties of the soil [4,5].
While very effective is the use of drip irrigation
system in intensive technologies of cultivation of agricultural and
ornamental plants, as well as the gardens when the State of the plants
depend to a large extent on the accuracy maintain humidity conditions
and diet. Drip irrigation is only a limited part of the soil surface
without surface run-off or water filtration in the deeper layers of the
soil. Drip irrigation allows you to maintain the same humidity root
living layer during the entire growing period at an optimum level
without significant variations, characteristic for other methods of
irrigation. When the soil is carried out through the capillary
hydration. This saved the optimum soil water-physical properties in the
root zone of plants (particularly in the critical phases of their
development) and eliminates moisture loss due to surface run-off and
infiltration in depth. It should be noted that this effect is more
pronounced in arid climates, but also in the more humid regions of drip
irrigation can substantially improve the qualitative indices of
cultivated products [4,5].
In fact, drip irrigation system as well as sprinkling
system is stationary and allows you to fully automate the entire
process of irrigation and power plants, which in turn leads to
significant savings in labor costs. A well-designed system allows you to
achieve the maximum of a uniform distribution of irrigation water and
nutrients throughout the site, providing a standard development of
plants and their dates of ripening, which facilitates harvesting and
reduces its losses and a number of other indicators of agricultural
production [3].
It should be noted that under drip irrigation water
is supplied in the form of individual drops of diameter 1-2mm or spray
directly to the local area of the field and not redistributed, hydrate
the soil, mainly using capillary forces.
Research objectives
Study of climatic and agronomic factors defining the
types of irrigation technology under consideration do not in and of
itself, but as an integral part of the technology of cropping.
The effectiveness of this technology is determined by
climatic and agronomic factors. In doing so, it should be noted that
inadequate accounting for these factors can lead to undesirable effects
such as surface runoff and deep filtration. In order to make the process
of irrigation more environmentally perfect, you must select the best
irrigation technology, which would ensure the best combination of
artificial and natural precipitation and maximum use of the latter. A
large number of options for Agro-Hydrology, climatic conditions,
characteristics of the possible precipitation make assessment of
irrigation technology very difficult. Output parameters to calculate the
intensity and duration of rainfall and irrigation intensity of
jevakotranspiracii [1,3,6].
Daily water supply is determined in accordance with
the amount of evaporation from water surface and shall be calculated by
the following formula:

Where,
(E)exec -evaporation over the previous 24 hours, mm;
(h) -precipitation, mm; -utilization of rainfall;
(K) pL -moisture ratio square.
Coefficient of moisture square. Determined from the expression:

Where,
S -area humidification of one plant, m;
(n)-quantity of irrigation Engineering (DRIPs) on 1 ha;
Duration of supply is determined by the formula:

Where,
tsuT - the daily duration of work systems of irrigation, low- intensity per hour;
(m)suT. -daily water supply, taking into account, bearing in mind the decision ., m/ha;
q -irrigation technology consumption (drips or sprinklers),l/h;
(n) -quantity of irrigation technology on 1 ha.
In formulas (3) and (4) function to (h) has significant influence to determine the technological process of irrigation;
To (h) -expresses productively used.
K-coefficient
The use of precipitation is functionally dependent on
rainfall, soil type, slope, length of rain starting soil moisture and
surface condition of the soil.
Productively used precipitation characterized by
utilization of rainfall. This part of precipitation is taken into
account when calculating the irrigation norms and is its integral part.
Taking into attention the Aliyev BH techniques [3] the numerical value of the coefficient used rainfall should is determined from the expression:

Where
Δ(h) -productively used precipitation, mm;
(H) -precipitation, mm.
Productively used precipitation are determined by the water balance method:
Δ(h) = hk-(h)n = Σ(E)(i) (6)
Where,
hk - supply of moisture in the soil after a rain, mm;
Σ (E)(i) - the sum of evaporation from water surface covered for i= 1 period.
The value of Δ(h) can be considered known as humidity
with regular irrigation is maintained at a constant level. In examining
the technological process of watering, you must know the occurrence of
groundwater. Results if the ground water table at closer to
root-inhabited soil layer, the daily water supply should be determined
by the following formula:

Where
tog -coefficient of groundwater, water-physical properties of the soil and the depth distribution of root system of plants.
We offer two ways to process crop irrigation. The
first method is based on the traditional method. According to this
method when there is no rain daily soil moisture reserves become
recharged until the desired size in accordance with the daily
evaporation in the previous day. It uses the testimony of SGI
isparometra-3000. At the beginning of the irrigation season and each
time after rain measured initial soil moisture in any sufficiently
precise method.
The second method is also based on the condition of
daily filling was ground to desired values according to the preceding
evaporation day the SGI is parometra indicators-3000. Here the soil
moisture is determined by calculation. This method is based on
theoretical and experimental dependencies by definition effective rain.
Used to calculate the dependence takes into account water-physical
properties of soil and rain options (intensity, duration, etc.).
The source parameter of the technological process of
watering, characterizing the soil conditions, moisture content is
calculated soil layer.
According to the description of the author of the
cashier's moisture layer of soil corresponding to 100% of the HB is
determined from the expression:
(h)NV = 100η n β HB (8)
Where,
η -volumetric mass estimated soil layer, g/cm3;
n -depth of the active soil layer, m;
β -soil moisture percentage by weight of dry soil;
If you consider that for heavy soil loamy humidity lower limit βmin
= 80% of NV and an upper bound = 100% HB, for these conditions is the
optimal soil moisture will be determined by the following formula:

that is, for heavy soil loamy optimum humidity 90%
would equal a NV., Then the moisture content calculated soil suitable
optimum humidity βwholesale = 90% NV will receive the following:

T Akim of the same method, you can determine the
optimal moisture content calculated soil for other soil conditions
(light, medium, etc.).
Irrigation technology under drip irrigation should be carried out as follows.
At the beginning of the vegetation period determine the initial humidity β and the appropriate moisture content (h)0 within the limits of the soil, while soil moisture is measured one of exact methods.
If it turns out that (h)0 < (h)wholesale , you must before the start of the growing period irrigation preirrigation norm of conduct:

If (h)0 >(h)opt ., the DSA vegetation glazes spend as many days later, while soil moisture reserves become (h)0 descended to the level of (h)wholesale .
As usual vegetation watering (daily rate and duration
of watering) on indicators of evapotranspiration. For this purpose use
the SGI isparograf-3000. If the previous day evaporated from the soil,
e.g., 5mm of moisture, then during the day under drip irrigation of the
soil served 2.5 mm (i.e. 25m3/HA) moisture.
Pass or other ways of irrigation (sprinkling) 5mm (or 50m3/
HA). This is because under drip irrigation is not all agricultural
crops area is irrigated. Irrigated here locally only equal plots the
root system of plants.
Duration of work are defined in nomogram 3.4.
In the without rainy period, this procedure is
repeated every day. When rainfall, two or three days after rain measured
soil moisture.
On the assumption that what is the difference between the (h)0 and(h)opt or the soil paid one-time irrigation norm (h)wholesale — (h)0(hopt> h0) or until the next watering the vegetation should wait for as many days as long as the soil evaporates difference, IE; (h)0-(h)opt(h0>Hopt)
Measurement of evapotranspiration and daily watering
duration are entered into a special register. Process parameters of
irrigation is determined by accordance with nomograms Figure 1-4.


These monograms are designed for heavy loam soils.
Slope is assumed to be zero. When constructing irrigation standards
definition nomographs for “(m)”coefficient of moisture of soil equal 1
was adopted. This extends the scope of the monograms and other
irrigation methods. It should be noted that under drip irrigation
watering norms nomogram received correct value of coefficient of soil
moisture, i.e.
(m) = (k) PL*(m)
Nomographs on rice. 1-4. let people are busy with
watering without making the soil moisture measurements to determine the
parameters of technological process of irrigation.
For reliable determination of technological process
of watering us address some specific cases, it is rainy and without
rainy periods. In the without rainy period irrigations are held as
follows:
When carrying out growing period irrigation standards equal to the sum of evaporation over the previous 24hours eexec soil moisture factor.
Coefficient of moisture of soil with sprinkler amounts topL = 1 , under drip irrigation toPL = 0.4 i.e. drip irrigation is not the entire area is wetted.
Thus, when daily irrigation norm sprinkling equal ( m) = E_flow under drip irriation(m) = 0.4 (e)Spanish
In sprinkler irrigation technological parameters
calculation period is as follows: using the GGI-3000 is determined by
the amount of precipitation, evaporation over the previous 24 hours eexec, and duration of td
rain using humidity recorder or air temperature (start and end of the
rain on the Ribbon). Knowing the amount of precipitation (h) and duration of rain tdyou can easily determine the average intensity of rain:


Famous td and (h) using equation
(3.56) you can build nomograms the intensity of the rain. The Figure 2
shows nomograms for determination of rain. T known dintensity (i)int rain on the nomogram Figure 3 determine rainfall utilization to further using nomogrami Figure 2 on known values of k, eexec and (h))
to the desired watering rule comes to bring the soil moisture to an
optimal level. Usually when rains current value was in the soil becomes
more than you need, since rain soil humidity is maintained at an optimum
level. The
challenge is determining the current value of the accesibility
of the soil after rain. While monograms on determining the
intensity of rain build according to the duration of the rain
against the number of atmospheric sludge. cm. Figure 4.

While rain increases by the value soil moisture
reserves become layer effectively precipitation. Regular watering the
vegetation after evaporation from soil effective rainfall.
Thus, the proposed ways to define process parameters
of irrigation, allow their use in the practical maximum productive use
of fallen precipitation.
For this purpose it is enough to determine the
required irrigation norm and assign the required dates and duration of
the system.
The results of the above calculation and performance
claims that irrigation technology mikro- sprinkler (MDK) as costs and
agro-meliorative indicators more effectively, and investment payback
period is 3.0 years-quite normal rate. Soso small droplet size and rain
intensity, uniform distribution of water for irrigation data square
designs rain the irrigation system, ensuring good absorbency and
ecological safety on any soils and slopes. Therefore, to assess the new
micro-irrigation techniques developed by us it is advisable to compare
their specifications. These indicators are shown in [3,7].
From the table it can be seen that by the number of
vehicles on 1 hectare, i.e. reach capital investments when the identity
of the other options, and much more economical KTMD IDAD model MDK. And
systems mikro- sprinkler model DMD for capital investment in 1.6times
cheaper base. In addition to these can also be noted that the
application of the proposed mikro-sprinkler system allows 1.6times more
economical or more spend irrigation norm compared with the base case.
Therefore stimulates the activity of mikro- sprinkler systems of
physiological processes by creating the best water and nutrient regimes
for crops: grapes, Apple, pear, sugar beets, soybeans and many other
cultivated in conditions mountain agriculture [7].
Example calculations determine the economic
feasibility of the use ofthe soya technology with mikrodozhdevaniem
proves that in the cultivation of this culture with the introduction of
macro and microelements is thrown with mikro- sprinkler compared to the
traditional option of irrigation (sulcus or puffed) annual economic
effect is 5.496thous. manat with 1 hectare square. When this investment
pays off for 3.0years.
With regard to the relatively low yield variants, it
is a mismatch of natural conditions in the usual-by Frost, during shoots
and weed research in these regions.
In addition, with the use of these systems of
irrigation, watering can be performed in different ways, comfortable to
the user: for example, in motion, position, when not required watering
large areas; usually out of range of sprinkler apparatus driven by the
rotation of the reactive force of flowing water under pressure, rotates
through shut-off body with Water-conducting valve inside which creates a
working pressure of throwing the Jet ejection water in the form of rain
drizzle.
Operating costs of these systems are insignificant,
sprinkler is easily transported manually to another position, and not
system network combined capital-intensive that advantageously differs it
from foreign and domestic designs used for the last time.
Conclusion
In conclusion, it should be noted that all of the
above types of mikro- sprinkler systems: (IDAD, KTMD, DMD and MACS) can
be recommended for use in wet areas naturally is not enough mountain and
Foothill regions of Azerbaijan for cultivation fruit, vines, cereals,
fodder and other agricultural crops.
To Know More About Trends in Technical and ScientificResearch Please click on:
https://juniperpublishers.com/ttsr/index.php
To Know More About Open Access Journals Please click on:
https://juniperpublishers.com/index.php
https://juniperpublishers.com/index.php
Comments
Post a Comment